
Distributed database systems
Project assignments

Juha Suomela
Arttu Tolvanen

Project 1: Problem description

● Multi-location, multi-database web shop application
● Sells collector’s items in Finland and northern Europe
● Client establishes warehouses in target countries

○ Could benefit greatly from a distributed database management system
■ Each site stores data that is not necessary at other sites (Storage, Orders)
■ Access to other sites still helpful (Login credentials, Cross-region purchases)

○ Similar to Amazon’s regional web shops, Amazon.com, Amazon.de, etc.

Project 1: Storyboards

Project 1: Storyboards

Project 1: Storyboards

Project 1: Network model

Project 1: Technical specification

● rqlite
○ A distributed database based on SQLite
○ Lightweight and free

● OpenVPN
○ To establish the communication network between sites
○ Free, secure, and reliable

Project 1: Schema

Project 1: Instances

Project 1: Fragmentation

● Horizontal fragmentation
○ Storage, Orders, OrderDetails
○ Only storing the necessary data at each site

● Vertical fragmentation
○ Items relation, according to ItemID and Price attributes
○ Hypothetical, helpful for accounting

● Do not fragment
○ Users, Employees, Items (incl. Books, VHS, Vinyl)

● Cost of fragmentation
○ Low transmission costs
○ Other costs scale with number of users

Project 1: Integration and access control

● On-Line Transaction Processing application
○ High volume of transactions
○ Requires up-to-date data

● Logical integration
○ Global conceptual schema is virtual
○ All data resides in operational databases

● Data and access control
○ Materialized views for neighboring site Storage fragments
○ Multilevel access control
○ Structural constraints to provide semantic integrity control

Project 1: Query processing

● Decomposition
○ Similar to a centralized database

● Localization
○ Viewing orders from different regions
○ Cross-region purchases
○ Primary horizontal fragmentation reduction

● Optimization
○ Total cost estimation

● Execution
○ Database homogeneity

Project 1: Transaction management

● Database consistency
○ Atomic, complete, isolated, and durable transactions
○ Query end result is a valid database even if errors occur
○ Provided by the DBMS

● Purchase transaction
○ Rollback to previous state if product in order missing from stock

Project 1: Concurrency control

● Locking
○ Editing data located in multiple sites
○ Managed by a centralized lock manager

● Deadlock avoidance
○ Consistent acquisition order of locks

Project 1: Reliability

● Transaction failures
○ Rollback to last consistent state
○ Handled by DBMS

● Physical failure
○ RAID-storage to increase fault tolerance
○ Backups for recovery

● Communication failure
○ Two-phase commit protocol

Project 1: Replication

● Performance-focused strategy
○ Maximizing locality of reference
○ Only replicating the necessary data
○ Risk for data loss

● Fragmented relations
○ Orders and OrderDetails loss problematic due to customer returns
○ Storage loss could be recovered from with materialized views

● Backups
○ Eliminate the need to replicate for redundancy
○ Worst-case scenarios for data loss can be processed with a delay

Project 1: Data warehouse design

● Design goal
○ Provide the client with the ability to analyze product and site performance

● Implementation
○ Query the application database to build a separate data warehouse
○ Sums up all sales of each product for each location
○ Query logic

■ Multiply the ProductDetails.count by Items.price and multiply result together.
■ Group result together where Orders.id = OrderDetails.orderid.

Project 1: Star schema

Project 2: Analyzing the DWH with Weka

● Weka environment explored in detail in the report
● Product recommendations

○ Extending the data warehouse schema to identify similar products
■ Adding subcategories to the product database (for example, genre)

○ Identifying products that are purchased together

● Data mining tools
○ OneR classifier
○ J48 decision tree classifier
○ NaiveBayes classifier

Project 2: Training data
(accumulated reviews of all users)

@relation shop

@attribute item numeric
@attribute genre {scifi, romance, action}
@attribute review {good, bad}

@data
1, scifi, good
1, scifi, good
1, scifi, good
1, scifi, bad
2, romance, good
2, romance, bad
2, romance, good
3, romance, good
3, romance, good

….

Project 2: Test data
(single users review scores)

@data
1, scifi, good
6, scifi, good

Project 2: Output

Results from: NaiveBayes, J48 and OneR

Correctly Classified Instances 2 100 %
Incorrectly Classified Instances 0 0 %

- Clearly shows that user likes same kind of shows that most other users do

- If test data reviews would be “bad”, “Incorrectly Classified Instances” would show that user dislikes the types of shows that most
other people do

Project 2: Summary

● We had some ideas, but fell short on understanding how to implement them
○ Apriori associator to identify products that are often bought together
○ OneR classifier to identify poorly performing products
○ Clustering customers based on purchasing patterns

● Generating a meaningful data set on our own proved difficult

